Biostatistics

Factorial Design

Deepa Anwar

Introduction:

A factor is a variable that is controlled and varied during the course of an experiment. In a chemistry experiment, temperature and pressure may be the factors that are deliberately changed over the course of the experiment. In the clinical trial treatment can be a factor. A study of experimental therapy vs. placebo can be thought of as having a treatment factor with 2 levels, o or the study dosage. A study with two different treatments has the possibility of a two-way design, varying the levels of treatment A and treatment B.

Factorial clinical trials are experiments that test the effect of more than one treatment using a type of design that permits an assessment of potential interactions among the treatments.

In a factorial design there are two or more factors with multiple levels that are crossed, e.g., three dose levels of drug A and two levels of drug B can be crossed to yield a total of six treatment combinations:

low dose of A with low dose of B low dose of A with high dose of B mid dose of A with low dose of B mid dose of A with high dose of B high dose of A with low dose of B high dose of A with high dose of B Factorial designs offer certain advantages over conventional designs. There are a number of ways that you could look at these groups.

Characteristics of Factorial Designs

The simplest factorial design is the 2×2 factorial with two levels of factor A crossed with two levels of factor B to yield four treatment combinations. A special case of the 2×2 factorial with a placebo and an active formulation of factor A crossed with a placebo and an active formulation of factor B. This yields the four treatment regimens:

- Placebo A + Placebo B
- Placebo A + Active B
- Active A + Placebo B
- Active A + Active B

For example, here you could have a placebo for each treatment. In one case you might have a placebo injection for A and a placebo pill for B. Such a design allows the comparison of the levels of factor A (A main effects), the comparison of the levels of factor B (B main effects), and the investigation of $A \times B$ interactions.

What is the Factorial ANOVA?

ANOVA is short for ANalysis Of VAriance. As discussed in the chapter on the one-way ANOVA the main purpose of a one-way ANOVA is to test if two or more groups differ from each other significantly in one or more characteristics. A factorial ANOVA compares means across two or more independent variables. Again, a one-way ANOVA has one independent variable that splits the sample into two or more groups, whereas the factorial ANOVA has two or more independent variables that split the sample in four or more groups. The simplest case of a factorial ANOVA uses two binary variables as independent variables, thus creating four groups within the sample.

		Independent Variables	Independent Variables
		1	2+
Dependent Variables	1	One-way ANOVA	Factorial ANOVA
	2+	Multiple ANOVAs	MANOVA

These are This is an example of a 2 x 2 ANOVA both two-factor B₁ B_2 **ANOVAs** Drug A Drug B A₁ Sample 1 Sample 2 Males Α, Sample 3 Sample 4 Females This is an example of a 2 x 3 ANOVA B_2 B_3 Β, 90-degree room 100-degree room 80-degree room A. Sample 1 Sample 2 Sample 3 Low Humidity A., Sample 4 Sample 5 Sample 6 **High Humidity**

Stating the Hypotheses

$$\begin{array}{l} \operatorname{Main Effect}\\ \operatorname{Main Effect}\\ H_0: \mu_{A_1} = \mu_{A_2}\\ H_1: \mu_{A_1} \neq \mu_{A_2} \end{array}$$

Factor A has 2 levels Factor B has 3 levels

$$H_0:$$
 $H_0:$ $H_1:$

$$H_0: \mu_{B_1} = \mu_{B_2} = \mu_{B_3}$$

 H_1 : at least one mean is different from another

 H_0 : There is no interaction between A & B H_1 : There is an interaction between A & B

Example 14.1

Data for a twofactor research study comparing two levels of task difficulty (easy and hard) and three levels of arousal (low, medium, and high). The study involves a total of six different treatment conditions with n = 5 participants in each condition

			6		
		Low	Medium	High	
	Easy	3	1	10	$T_{\text{ROW1}} = 90$ $N = 1$ $G = 1$ $\Sigma X^2 = 8$ $T_{\text{ROW2}} = 30$
		1	4	10	
		1	8	14	
		6	8 6 6	7	
		4	6	9	
		M = 3	M = 5	M = 10	
		T = 15	T = 25	T = 50	
Factor A Task Difficulty		SS = 18	SS = 28	SS = 26	
	Difficult	0	2	1 I	
		0 2 0	-	7q	
		0	2	1	
		0	2 2 2	6	
		3	2	1	
		M = 1	M = 3	M = 2	
		T = 5	T = 15	T = 10	
		SS = 8	SS = 20	SS = 20	

Summarizing Results

Source	SS	df	MS	F
Between treatments	260	5		
Factor A (difficulty)	120	1	120	F(1,24) = 24.00
Factor B (arousal)	80	2	40	F(2,24) = 8.00
A x B	60	2	30	F(2,24) = 6.00
Within treatments	120	24	5	
Total	380	29		